75 research outputs found

    LPS-induced Pellino3 degradation is mediated by p62-dependent autophagy

    Get PDF
    Background: In macrophages Toll-like receptor 4 (TLR4) is activated in response to lipopolysaccharide (LPS) and induces proinflammatory cytokine expression. Therefore, mechanisms terminating proinflammatory gene expression are important. Autophagy plays a central role in controlling innate immune responses by lysosomal degradation of signaling proteins, thus contributing to the resolution of inflammation. Autophagic proteins like p62 directly interact with molecules involved in the TLR4-signaling pathway, but a correlation with the IRAK E3 ligase and scaffold protein Pellino3 remains obscure. Hence, we are interested in elucidating the function of Pellino3 to prove our hypothesis that it is a key regulator in the TLR4-signaling cascade. Methods: We used the cecal ligation and puncture (CLP) mouse model causing polymicrobial sepsis to analyze Pellino3 protein and mRNA expression. Furthermore, we induced endotoxemia in RAW264.7 mouse macrophages by LPS treatment to verify in vivo experiments. Lentiviral Pellino3 knockdown in RAW264.7 macrophages was used for cytokine measurements at mRNA level. To analyze potential Pellino3 binding partners in TLR4-signaling by mass spectrometry (MS), we overexpressed FLAG-tagged Pellino3 in RAW264.7 macrophages, treated cells for 3, 6 and 24 hours with LPS and immunoprecipitated Pellino3 via its FLAG-tag. To consider Pellino3 degradation as a result of p62-mediated autophagy, we transiently knocked down p62 by siRNA in RAW264.7 macrophages and also pharmacologically blocked LPS-induced autophagy by Bafilomycin A1. Results: We demonstrated Pellino3 protein degradation in primary CD11b+ splenocytes after 24 hours following CLP operation and confirmed this in RAW264.7 macrophages after 24-hour LPS stimulation. Knockdown of Pellino3 attenuates proinflammatory cytokines, for example IL-6 mRNA, after 6 hours of LPS. Furthermore, we found by MS and verifying immunoprecipitation experiments that p62 is a Pellino3 binding partner, thus targeting Pellino3 for degradation. In line, both p62 knockdown and Bafilomycin A1 treatment prevent Pellino3 degradation, supporting an autophagic mechanism. Conclusion: Our observations highlight a regulatory role of Pellino3 on TLR4 signaling. Thus, antagonism of Pellino3 in the hyperinflammatory phase of sepsis may counteract the cytokine storm. Furthermore, stabilization of Pellino3 by inhibition of autophagy in the hypoinflammatory phase of sepsis may improve immunity. In consideration of these two conflictive sepsis phases, modulation of Pellino3 may provide a new strategy for the development of a therapy approach in sepsis

    Kinetic characterization of selective peroxisome-proliferator-activated receptor gamma modulators in vitro

    Get PDF
    Background: The ligand-activated transcription factor, peroxisome-proliferator-activated receptor gamma (PPARγ), has been shown to play an essential role in immunosuppression during sepsis. PPARγ is upregulated in T cells of septic patients, sensitizing these cells to PPARγ-dependent apoptosis and thus contributing to T-cell depletion. In the polymicrobial cecum ligation and puncture (CLP) sepsis model in mice, both T-cell-specific gene knockout (Lck-Cre PPARγfl/fl) and systemic pharmacological PPARγ antagonism by GW9662 improved survival. Because GW9662 was only effective when applied 3 hours after CLP, we were interested to extend this time frame. For this reason we characterized the kinetics of SPPARγMs when administered before or in combination with the agonist thiazolidinedione, rosiglitazone. Methods: A PPARγ-dependent transactivation assay was used in HEK293T cells. It is based on the vector pFA-PPARγ-LBD-GAL4-DBD encoding the hybrid protein PPARγ-LBD-GAL4-DBD and the reporter vector pFR-Luc, carrying a GAL4-responsive element in front of the Firefly luciferase gene. These two vectors were co-transfected, in combination with a control vector encoding Renilla luciferase (pRL-CMV) to normalize Firefly luciferase activity for transfection efficiency. Following transfection, cells were incubated with the SPPARγMs F-MOC and MCC-555 and the PPARγ antagonist GW9662 for different times (2 to 48 hours) and at increasing doses (0.01 to 10 μM), with or without rosiglitazone (0.01 to 10 μM). Transactivation was analyzed using a 96-well plate format. Results: Rosiglitazone transactivated PPARγ in a time-dependent and dose-dependent manner, the response gradually increasing to a maximum at 48 hours with 10 μM. Low concentrations (0.01 to 0.1 μM) of SPPARγMs F-MOC and MCC-555 and the PPARγ antagonist GW9662 all exerted dose-independent antagonistic effects at an early incubation time point (2 hours). From 10 hours onwards, MCC-555 and GW9662, given alone, both exerted PPARγ agonistic effects, MCC-555 in parallel to responses to rosiglitazone, but GW9662 with characteristics of partial antagonism. F-MOC showed no dose-dependent effect at any concentration at later time points. Only GW9662 (1 to 10 μM) was able to inhibit rosiglitazone (0.1 to 1 μM)-induced PPARγ transactivation after 10 hours. Conclusion: Our kinetic analysis reveals clear differences in the modulatory characteristics of PPARγ inhibitors, with previously unreported early inhibitory effects and late agonistic or partial agonistic activity. New SPPARγMs with extended inhibitory activity may prove useful in the therapy of sepsis

    Attenuated NOX2 expression impairs ROS production during the hypoinflammatory phase of sepsis

    Get PDF
    Background: The multicomponent phagocytic NADPH oxidase produces reactive oxygen species (ROS) after activation by microorganisms or inflammatory mediators. In the hypoinflammatory phase of sepsis, macrophages are alternatively activated by contact with apoptotic cells or their secretion products. This inhibits NADPH oxidase and leads to attenuated ROS production and furthermore contributes among others to a hyporeactive host defense. Due to this immune paralysis, sepsis patients suffer from recurrent and secondary infections. We focused on the catalytic subunit of NADPH oxidase, the transmembrane protein NOX2. We assume that after induction of sepsis the expression of NOX2 is reduced and hence ROS production is decreased. Methods: We induced polymicrobial sepsis in mice by cecal ligation and puncture. The ability of peritoneal macrophages (PMs) to produce ROS was determined by FACS via hydroethidine assay. NOX2 expression of PMs was determined by western blot and qPCR. To elucidate the mechanism causing mRNA destabilization, we performed in vitro experiments using J774 macrophages. To obtain an alternatively activated phenotype, macrophages were stimulated with conditioned medium from apoptotic T cells (CM). By luciferase assays we figured out a 3'UTR-dependent regulation of NOX2 mRNA stability. Assuming that a protein is involved in the mRNA degradation, we performed a RNA pulldown with biotinylated NOX2-3'UTR constructs followed by mass spectrometry. We verified the role of SYNCRIP by siRNA approach. Additionally, we overexpressed NOX2 in J774 cells and analyzed the ROS production (w/wo CM treatment) by FACS. Results: We found an impaired expression of NOX2 at RNA and protein level along with decreased ROS production after induction of sepsis in mice as well as stimulating J774 macrophages with CM of apoptotic T cells. This is due to a time-dependent NOX2 mRNA degradation depending on SYNCRIP, a RNA-binding protein, which stabilizes NOX2 mRNA through binding to its 3'UTR under normal conditions. In line, knockdown of SYNCRIP also decreases NOX2 mRNA expression. We assume that a CM-dependent modification or degradation of SYNCRIP prevents its stabilizing function. As the overexpression of NOX2 restores ROS production of CM-treated J774 cells, we assume that NOX2 expression is crucial for maintaining NADPH activity during the hypoinflammatory phase of sepsis. Conclusion: Our data imply a regulatory impact of SYNCRIP on NOX2 stability during the late phase of sepsis. Therefore, further understanding of the regulation of NADPH oxidase could lead to the design of a therapy to reconstitute NADPH oxidase function, finally improving immune function in sepsis patients

    PPARγ1 attenuates cytosol to membrane translocation of PKCα to desensitize monocytes/macrophages

    Get PDF
    Recently, we provided evidence that PKCα depletion in monocytes/macrophages contributes to cellular desensitization during sepsis. We demonstrate that peroxisome proliferator–activated receptor γ (PPARγ) agonists dose dependently block PKCα depletion in response to the diacylglycerol homologue PMA in RAW 264.7 and human monocyte–derived macrophages. In these cells, we observed PPARγ-dependent inhibition of nuclear factor-κB (NF-κB) activation and TNF-α expression in response to PMA. Elucidating the underlying mechanism, we found PPARγ1 expression not only in the nucleus but also in the cytoplasm. Activation of PPARγ1 wild type, but not an agonist-binding mutant of PPARγ1, attenuated PMA-mediated PKCα cytosol to membrane translocation. Coimmunoprecipitation assays pointed to a protein–protein interaction of PKCα and PPARγ1, which was further substantiated using a mammalian two-hybrid system. Applying PPARγ1 mutation and deletion constructs, we identified the hinge helix 1 domain of PPARγ1 that is responsible for PKCα binding. Therefore, we conclude that PPARγ1-dependent inhibition of PKCα translocation implies a new model of macrophage desensitization

    Macrophage-Derived Iron-Bound Lipocalin-2 Correlates with Renal Recovery Markers Following Sepsis-Induced Kidney Damage

    Get PDF
    During the course of sepsis in critically ill patients, kidney dysfunction and damage are among the first events of a complex scenario toward multi-organ failure and patient death. Acute kidney injury triggers the release of lipocalin-2 (Lcn-2), which is involved in both renal injury and recovery. Taking into account that Lcn-2 binds and transports iron with high affinity, we aimed at clarifying if Lcn-2 fulfills different biological functions according to its iron-loading status and its cellular source during sepsis-induced kidney failure. We assessed Lcn-2 levels both in serum and in the supernatant of short-term cultured renal macrophages (M phi) as well as renal tubular epithelial cells (TEC) isolated from either Sham-operated or cecal ligation and puncture (CLP)-treated septic mice. Total kidney iron content was analyzed by Perls' staining, while Lcn-2-bound iron in the supernatants of short-term cultured cells was determined by atomic absorption spectroscopy. Lcn-2 protein in serum was rapidly up-regulated at 6 h after sepsis induction and subsequently increased up to 48 h. Lcn-2-levels in the supernatant of TEC peaked at 24 h and were low at 48 h with no change in its iron-loading. In contrast, in renal M phi Lcn-2 was low at 24 h, but increased at 48 h, where it mainly appeared in its iron-bound form. Whereas TEC-secreted, iron-free Lcn-2 was associated with renal injury, increased M phi-released iron-bound Lcn-2 was linked to renal recovery. Therefore, we hypothesized that both the cellular source of Lcn-2 as well as its iron-load crucially adds to its biological function during sepsis-induced renal injury

    5-Lipoxygenase contributes to PPAR [gamma] activation in macrophages in response to apoptotic cells

    Get PDF
    Background: One hallmark contributing to immune suppression during the late phase of sepsis is macrophage polarization to an anti-inflammatory phenotype upon contact with apoptotic cells (AC). Taking the important role of the nuclear receptor PPARγ for this phenotype switch into consideration, it remains elusive how AC activate PPARγ in macrophages. Therefore, we were interested to characterize the underlying principle. Methods: Apoptosis was induced by treatment of Jurkat T cells for 3 hours with 0.5 μg/ml staurosporine. Necrotic cells (NC) were prepared by heating cells for 20 minutes to 65°C. PPARγ activation was followed by stably transducing RAW264.7 macrophages with a vector encoding the red fluorescent protein mRuby after PPARγ binding to 4 × PPRE sites downstream of the reporter gene sequence. This readout was established by treatment with the PPARγ agonist rosiglitazone (1 μM) and AC (5:1). Twenty-four hours after stimulation, mRuby expression was analysed by fluorescence microscopy. Lipid rafts of AC, NC, as well as living cells (LC) were enriched by sucrose gradient centrifugation. Fractions were analysed for lipid raft-associated marker proteins. Lipid rafts were incubated with transduced RAW264.7 macrophages as described above. 5-Lipoxygenase (5-LO) involvement was verified by pharmacological inhibition (MK-866, 1 μM) and overexpression. Results: Assuming that the molecule responsible for PPARγ activation in macrophages is localized in the cell membrane of AC, most probably associated to lipid rafts, we isolated lipid rafts from AC, NC and LC. Mass spectrometric analysis of lipid rafts of AC showed the expression of 5-LO, whereas lipid rafts of LC did not. Moreover, incubating macrophages with lipid rafts of AC induced mRuby expression. In contrast, lipid rafts of NC and LC did not. To verify the involvement of 5-LO in activating PPARγ in macrophages, Jurkat T cells were incubated for 30 minutes with the 5-LO inhibitor MK-866 (1 μM) before apoptosis induction. In line with our hypothesis, these AC did not induce mRuby expression. Finally, although living Jurkat T cells overexpressing 5-LO did not activate PPARγ in macrophages, mRuby expression was significantly increased when AC were generated from 5-LO overexpressing compared with wild-type Jurkat cells. Conclusion: Our results suggest that induction of apoptosis activates 5-LO, localizing to lipid rafts, necessary for PPARγ activation in macrophages. Therefore, it will be challenging to determine whether 5-LO activity in AC, generated from other cell types, correlates with PPARγ activation, contributing to an immune-suppressed phenotype in macrophages

    Association between spatial distribution of leukocyte subsets and clinical presentation of head and neck squamous cell carcinoma

    Get PDF
    BackgroundInteractions between tumor cells and cells in the microenvironment contribute to tumor development and metastasis. The spatial arrangement of individual cells in relation to each other influences the likelihood of whether and how these cells interact with each other.MethodsThis study investigated the effect of spatial distribution on the function of leukocyte subsets in the microenvironment of human head and neck squamous cell carcinoma (HNSCC) using multiplex immunohistochemistry (IHC). Leukocyte subsets were further classified based on analysis of two previously published HNSCC single-cell RNA datasets and flow cytometry (FC).ResultsIHC revealed distinct distribution patterns of leukocytes differentiated by CD68 and CD163. While CD68hiCD163lo and CD68hiCD163hi cells accumulated near tumor sites, CD68loCD163hi cells were more evenly distributed in the tumor stroma. PD-L1hi and PD-1hi cells accumulated predominantly around tumor sites. High cell density of PD-L1hi CD68hiCD163hi cells or PD-1hi T cells near the tumor site correlated with improved survival. FC and single cell RNA revealed high variability within the CD68/CD163 subsets. CD68hiCD163lo and CD68hiCD163hi cells were predominantly macrophages (MΦ), whereas CD68loCD163hi cells appeared to be predominantly dendritic cells (DCs). Differentiation based on CD64, CD80, CD163, and CD206 revealed that TAM in HNSCC occupy a broad spectrum within the classical M1/M2 polarization. Notably, the MΦ subsets expressed predominantly CD206 and little CD80. The opposite was observed in the DC subsets.ConclusionThe distribution patterns and their distinct interactions via the PD-L1/PD-1 pathway suggest divergent roles of CD68/CD163 subsets in the HNSCC microenvironment. PD-L1/PD-1 interactions appear to occur primarily between specific cell types close to the tumor site. Whether PD-L1/PD-1 interactions have a positive or negative impact on patient survival appears to depend on both the spatial localization and the entity of the interacting cells. Co-expression of other markers, particularly CD80 and CD206, supports the hypothesis that CD68/CD163 IHC subsets have distinct functions. These results highlight the association between spatial leukocyte distribution patterns and the clinical presentation of HNSCC

    Cross-talk between red blood cells and plasma influences blood flow and omics phenotypes in severe COVID-19

    Get PDF
    Coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and can affect multiple organs, among which is the circulatory system. Inflammation and mortality risk markers were previously detected in COVID-19 plasma and red blood cells (RBCs) metabolic and proteomic profiles. Additionally, biophysical properties, such as deformability, were found to be changed during the infection. Based on such data, we aim to better characterize RBC functions in COVID-19. We evaluate the flow properties of RBCs in severe COVID-19 patients admitted to the intensive care unit by using microfluidic techniques and automated methods, including artificial neural networks, for an unbiased RBC analysis. We find strong flow and RBC shape impairment in COVID-19 samples and demonstrate that such changes are reversible upon suspension of COVID-19 RBCs in healthy plasma. Vice versa, healthy RBCs resemble COVID-19 RBCs when suspended in COVID-19 plasma. Proteomics and metabolomics analyses allow us to detect the effect of plasma exchanges on both plasma and RBCs and demonstrate a new role of RBCs in maintaining plasma equilibria at the expense of their flow properties. Our findings provide a framework for further investigations of clinical relevance for therapies against COVID-19 and possibly other infectious diseases

    CD69 is a TGF-β/1α,25-dihydroxyvitamin D3 target gene in monocytes

    Get PDF
    CD69 is a transmembrane lectin that can be expressed on most hematopoietic cells. In monocytes, it has been functionally linked to the 5-lipoxygenase pathway in which the leukotrienes, a class of highly potent inflammatory mediators, are produced. However, regarding CD69 gene expression and its regulatory mechanisms in monocytes, only scarce data are available. Here, we report that CD69 mRNA expression, analogous to that of 5-lipoxygenase, is induced by the physiologic stimuli transforming growth factor-β (TGF-β) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in monocytic cells. Comparison with T- and B-cell lines showed that the effect was specific for monocytes. CD69 expression levels were increased in a concentration-dependent manner, and kinetic analysis revealed a rapid onset of mRNA expression, indicating that CD69 is a primary TGF-β/1α,25(OH)2D3 target gene. PCR analysis of different regions of the CD69 mRNA revealed that de novo transcription was initiated and proximal and distal parts were induced concomitantly. In common with 5-lipoxygenase, no activation of 0.7 kb or ~2.3 kb promoter fragments by TGF-β and 1α,25(OH)2D3 could be observed in transient reporter assays for CD69. Analysis of mRNA stability using a transcription inhibitor and a 3′UTR reporter construct showed that TGF-β and 1α,25(OH)2D3 do not influence CD69 mRNA stability. Functional knockdown of Smad3 clearly demonstrated that upregulation of CD69 mRNA, in contrast to 5-LO, depends on Smad3. Comparative studies with different inhibitors for mitogen activated protein kinases (MAPKs) revealed that MAPK signalling is involved in CD69 gene regulation, whereas 5-lipoxygenase gene expression was only partly affected. Mechanistically, we found evidence that CD69 gene upregulation depends on TAK1-mediated p38 activation. In summary, our data indicate that CD69 gene expression, conforming with 5-lipoxygenase, is regulated monocyte-specifically by the physiologic stimuli TGF-β and 1α,25(OH)2D3 on mRNA level, although different mechanisms account for the upregulation of each gene
    corecore